2018年10月31日水曜日

学習環境

解析入門 原書第3版 (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第3部(積分)、第12章(いくつかの計算練習)、3(ウォリスの公式)のスターリングの公式における定数.を取り組んでみる。


  1. スターリングの公式の証明7ウォリスの積公式の定理の系より、

    c = lim n n n + 1 2 e - n n ! = lim n 2 n 2 n + 1 2 e - 2 n 2 n ! = lim n 2 2 2 n n 2 n + 1 2 e - 2 n 2 n ! · n 1 2 n 1 2 · n ! 2 n ! 2 = lim n n ! 2 2 2 27 2 n ! n 1 2 · n 2 n + 1 2 · e - 2 n n ! 2 = lim n n ! 2 2 2 n 2 2 n ! n 1 2 2 n + 1 2 e - n n ! 2 = lim n n ! 2 2 2 n 2 2 n ! n 1 2 · lim n 2 n + 1 2 e - n n ! 2 = 2 π c 2

    よって、

    c = 1 2 π

コード(Emacs)

Python 3

#!/usr/bin/env python3
from sympy import pprint, symbols, Limit, exp, factorial, Rational, oo, plot, sqrt, pi


n = symbols('n', integer=True)
f = (2 * n) ** (2 * n + Rational(1, 2)) * exp(-2 * n) / factorial(2 * n)
c = Limit(f, n, oo)

for t in [c, c.doit()]:
    pprint(t)
    print()

p = plot(f, 1 / sqrt(2 * pi), (n, 1, 50), show=False, legend=True)
colors = ['red', 'green']
for i, color in enumerate(colors):
    p[i].line_color = color
p.save('sample5.svg')

入出力結果(Terminal, Jupyter(IPython))

$ ./sample5.py
    ⎛     2⋅n + 1/2  -2⋅n⎞
    ⎜(2⋅n)         ⋅ℯ    ⎟
lim ⎜────────────────────⎟
n─→∞⎝       (2⋅n)!       ⎠

 √2 
────
2⋅√π

$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.001" value="0.01">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="0">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="20">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="0">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="2">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample5.js"></script>

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    input_n0 = document.querySelector('#n0'),
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2],
    p = (x) => pre0.textContent += x + '\n';

let factorial = n => {
    let res = 1;

    for (let i = 1; i <= n ; i += 1) {
        res *= i;
    }
    return res;    
},
    f = x => {
        let n = Math.floor(x);

        return factorial(2 * n) ** (2 * n + 1 / 2) * Math.exp(-2 * n) /
            factorial(2 * n);
    },
    fns = [[f, 'red']];

let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value);

    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }    
    
    let points = [],
        lines = [[x1, 1 / Math.sqrt(2 * Math.PI),
                  x2, 1 / Math.sqrt(2 * Math.PI), 'green']];
    
    fns
        .forEach((o) => {
            let [f, color] = o;
            for (let x = x1; x <= x2; x += dx) {
                let y = f(x);

                points.push([x, y, color]);
            }
        });
    
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');

    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');

    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);

    [fns].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();







0 コメント:

コメントを投稿