学習環境
- Surface Go、タイプ カバー、ペン(端末)
- Windows 10 Pro (OS)
- Nebo(Windows アプリ)
- iPad Pro + Apple Pencil
- MyScript Nebo - MyScript(iPad アプリ(iOS))
- 参考書籍
解析入門(下) (松坂和夫 数学入門シリーズ 6) (松坂 和夫(著)、岩波書店)の第24章(重積分の変数変換)、24.2(変数変換定理)、問題5-(b).を取り組んでみる。
極座標と曲線の長さと微分について。
よって、 求める曲線 カルジオイドの長さは、
コード(Emacs)
Python 3
#!/usr/bin/env python3 from sympy import pprint, symbols, Integral, pi, cos, sin, sqrt, Derivative print('5-(b).') theta = symbols('θ', real=True) a = symbols('a', positive=True) r = a * (1 + cos(theta)) x = r * cos(theta) y = r * sin(theta) f = sqrt(Derivative(x, theta, 1) ** 2 + Derivative(y, theta, 1) ** 2) I = 2 * Integral(f, (theta, 0, pi)) for t in [I, I.doit(), I.doit().simplify()]: pprint(t) print() f = sqrt(Derivative(x, theta, 1).doit() ** 2 + Derivative(y, theta, 1).doit() ** 2) I = 2 * Integral(f, (theta, 0, pi)) for t in [I, I.doit(), I.doit().simplify()]: pprint(t) print() I = 2 * Integral(sqrt((2 * a * cos(theta / 2)) ** 2), (theta, 0, pi)) for t in [I, I.doit()]: pprint(t) print()
入出力結果(Terminal, Jupyter(IPython))
$ ./sample5.py 5-(b). π ⌠ ⎮ _____________________________________________________________ ⎮ ╱ 2 2 ⎮ ╱ ⎛∂ ⎞ ⎛∂ ⎞ 2⋅⎮ ╱ ⎜──(a⋅(cos(θ) + 1)⋅sin(θ))⎟ + ⎜──(a⋅(cos(θ) + 1)⋅cos(θ))⎟ dθ ⎮ ╲╱ ⎝∂θ ⎠ ⎝∂θ ⎠ ⌡ 0 π ⌠ ⎮ ___________________ __________________________________ ⎮ ╱ 2 2 ╱ 2 2 2⋅a⋅⎮ ╲╱ sin (θ) + cos (θ) ⋅╲╱ sin (θ) + cos (θ) + 2⋅cos(θ) + 1 dθ ⌡ 0 π ⌠ ⎮ ____________ 2⋅a⋅⎮ √2⋅╲╱ cos(θ) + 1 dθ ⌡ 0 π ⌠ ⎮ ______________________________________________________________________ ⎮ ╱ ⎮ ╱ 2 ⎛ 2⋅⎮ ╲╱ (-a⋅(cos(θ) + 1)⋅sin(θ) - a⋅sin(θ)⋅cos(θ)) + ⎝a⋅(cos(θ) + 1)⋅cos(θ) ⌡ 0 ______________ 2 2 ⎞ - a⋅sin (θ)⎠ dθ π ⌠ ⎮ ___________________ __________________________________ ⎮ ╱ 2 2 ╱ 2 2 2⋅a⋅⎮ ╲╱ sin (θ) + cos (θ) ⋅╲╱ sin (θ) + cos (θ) + 2⋅cos(θ) + 1 dθ ⌡ 0 π ⌠ ⎮ ____________ 2⋅a⋅⎮ √2⋅╲╱ cos(θ) + 1 dθ ⌡ 0 π ⌠ ⎮ │ ⎛θ⎞│ 2⋅⎮ 2⋅a⋅│cos⎜─⎟│ dθ ⎮ │ ⎝2⎠│ ⌡ 0 8⋅a $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.005"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-5"> <label for="x2">x2 = </label> <input id="x2" type="number" value="5"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-5"> <label for="y2">y2 = </label> <input id="y2" type="number" value="5"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample5.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let a = 2, fr = theta => a * (1 + Math.cos(theta)), fns = []; let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], lines = []; for (let theta = 0; theta < Math.PI / 2; theta += dx) { let r0 = fr(theta); points.push([r0 * Math.cos(theta), r0 * Math.sin(theta), 'red']); } for (let theta = Math.PI / 2; theta < Math.PI; theta += dx) { let r0 = fr(theta); points.push([r0 * Math.cos(theta), r0 * Math.sin(theta), 'green']); } for (let theta = Math.PI; theta < 3 / 2 * Math.PI; theta += dx) { let r0 = fr(theta); points.push([r0 * Math.cos(theta), r0 * Math.sin(theta), 'blue']); } for (let theta = 3 / 2 * Math.PI; theta < 2 * Math.PI; theta += dx) { let r0 = fr(theta); points.push([r0 * Math.cos(theta), r0 * Math.sin(theta), 'orange']); } fns .forEach((o) => { let [fn, color] = o; for (let x = x1; x <= x2; x += dx) { let y = fn(x); if (Math.abs(y) < Infinity) { points.push([x, y, color]); } } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); p(fns.join('\n')); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿