2018年12月11日火曜日

学習環境

解析入門(下) (松坂和夫 数学入門シリーズ 6) (松坂 和夫(著)、岩波書店)の第24章(重積分の変数変換)、24.2(変数変換定理)、問題5-(b).を取り組んでみる。



    1. 極座標と曲線の長さと微分について。

      x = r cos θ y = r sin θ dx d θ 2 + dy d θ 2 = d r d θ cos θ - r sin θ 2 + d r d θ sin θ + r cos θ 2 = d r d θ 2 cos 2 θ + r 2 sin 2 θ - 2 r sin θ cos θ d r d θ + d r d θ 2 sin 2 θ + r 2 cos 2 θ + 2 r sin θ cos θ d r d θ = r 2 sin 2 θ + cos 2 θ + d r d θ 2 sin 2 θ + cos 2 θ = r 2 + d r d θ 2 = a 2 1 + cos θ 2 + - arcsin θ 2 = a 2 1 + cos θ 2 + a 2 sin 2 θ = a 2 1 + 2 cos θ + cos 2 θ + sin 2 θ = a 2 2 + 2 cos θ = 2 a 2 1 + cos θ = 2 a 2 · 2 cos 2 θ 2 = 2 a cos θ 2 2

      よって、 求める曲線 カルジオイドの長さは、

      2 0 π 2 a cos θ 2 2 d θ = 4 a 0 π cos θ 2 d θ = 4 a 2 sin θ 2 0 π = 8 a

コード(Emacs)

Python 3

#!/usr/bin/env python3
from sympy import pprint, symbols, Integral, pi, cos, sin, sqrt, Derivative

print('5-(b).')

theta = symbols('θ', real=True)
a = symbols('a', positive=True)
r = a * (1 + cos(theta))
x = r * cos(theta)
y = r * sin(theta)
f = sqrt(Derivative(x, theta, 1) ** 2 + Derivative(y, theta, 1) ** 2)

I = 2 * Integral(f, (theta, 0, pi))


for t in [I, I.doit(), I.doit().simplify()]:
    pprint(t)
    print()

f = sqrt(Derivative(x, theta, 1).doit() ** 2 +
         Derivative(y, theta, 1).doit() ** 2)
I = 2 * Integral(f, (theta, 0, pi))

for t in [I, I.doit(), I.doit().simplify()]:
    pprint(t)
    print()

I = 2 * Integral(sqrt((2 * a * cos(theta / 2)) ** 2), (theta, 0, pi))
for t in [I, I.doit()]:
    pprint(t)
    print()

入出力結果(Terminal, Jupyter(IPython))

$ ./sample5.py
5-(b).
  π                                                                      
  ⌠                                                                      
  ⎮      _____________________________________________________________   
  ⎮     ╱                            2                              2    
  ⎮    ╱  ⎛∂                        ⎞    ⎛∂                        ⎞     
2⋅⎮   ╱   ⎜──(a⋅(cos(θ) + 1)⋅sin(θ))⎟  + ⎜──(a⋅(cos(θ) + 1)⋅cos(θ))⎟   dθ
  ⎮ ╲╱    ⎝∂θ                       ⎠    ⎝∂θ                       ⎠     
  ⌡                                                                      
  0                                                                      

    π                                                                
    ⌠                                                                
    ⎮    ___________________    __________________________________   
    ⎮   ╱    2         2       ╱    2         2                      
2⋅a⋅⎮ ╲╱  sin (θ) + cos (θ) ⋅╲╱  sin (θ) + cos (θ) + 2⋅cos(θ) + 1  dθ
    ⌡                                                                
    0                                                                

    π                     
    ⌠                     
    ⎮      ____________   
2⋅a⋅⎮ √2⋅╲╱ cos(θ) + 1  dθ
    ⌡                     
    0                     

  π                                                                           
  ⌠                                                                           
  ⎮     ______________________________________________________________________
  ⎮    ╱                                                                      
  ⎮   ╱                                            2   ⎛                      
2⋅⎮ ╲╱   (-a⋅(cos(θ) + 1)⋅sin(θ) - a⋅sin(θ)⋅cos(θ))  + ⎝a⋅(cos(θ) + 1)⋅cos(θ) 
  ⌡                                                                           
  0                                                                           

                 
                 
______________   
            2    
       2   ⎞     
- a⋅sin (θ)⎠   dθ
                 
                 

    π                                                                
    ⌠                                                                
    ⎮    ___________________    __________________________________   
    ⎮   ╱    2         2       ╱    2         2                      
2⋅a⋅⎮ ╲╱  sin (θ) + cos (θ) ⋅╲╱  sin (θ) + cos (θ) + 2⋅cos(θ) + 1  dθ
    ⌡                                                                
    0                                                                

    π                     
    ⌠                     
    ⎮      ____________   
2⋅a⋅⎮ √2⋅╲╱ cos(θ) + 1  dθ
    ⌡                     
    0                     

  π                
  ⌠                
  ⎮     │   ⎛θ⎞│   
2⋅⎮ 2⋅a⋅│cos⎜─⎟│ dθ
  ⎮     │   ⎝2⎠│   
  ⌡                
  0                

8⋅a

$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.0001" value="0.005">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-5">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="5">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-5">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="5">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample5.js"></script>    

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2],
    p = (x) => pre0.textContent += x + '\n',
    range = (start, end, step=1) => {
        let res = [];
        for (let i = start; i < end; i += step) {
            res.push(i);
        }
        return res;
    };

let a = 2,
    fr = theta => a * (1 + Math.cos(theta)),
    fns = [];

let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value);
            
    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }
    
    let points = [],
        lines = [];

    for (let theta = 0; theta < Math.PI / 2; theta += dx) {
        let r0 = fr(theta);
        
        points.push([r0 * Math.cos(theta), r0 * Math.sin(theta), 'red']);
    }
    for (let theta = Math.PI / 2; theta < Math.PI; theta += dx) {
        let r0 = fr(theta);
        
        points.push([r0 * Math.cos(theta), r0 * Math.sin(theta), 'green']);
    }
    for (let theta = Math.PI; theta < 3 / 2 * Math.PI; theta += dx) {
        let r0 = fr(theta);
        
        points.push([r0 * Math.cos(theta), r0 * Math.sin(theta), 'blue']);
    }
    for (let theta = 3 / 2 * Math.PI; theta < 2 * Math.PI; theta += dx) {
        let r0 = fr(theta);
        
        points.push([r0 * Math.cos(theta), r0 * Math.sin(theta), 'orange']);
    }
    
    fns
        .forEach((o) => {
            let [fn, color] = o;
            
            for (let x = x1; x <= x2; x += dx) {
                let y = fn(x);
                
                if (Math.abs(y) < Infinity) {
                    points.push([x, y, color]);
                }
            }
        });
    
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);

    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');
    
    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);
    p(fns.join('\n'));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();







0 コメント:

コメントを投稿