開発環境
- macOS Mojave - Apple (OS)
- Emacs (Text Editor)
- Windows 10 Pro (OS)
- Visual Studio Code (Text Editor)
- Python 3.7 (プログラミング言語)
Programming Bitcoin: Learn How to Program Bitcoin from Scratch (Jimmy Song(著)、O'Reilly Media)のChapter 3(Elliptic Curve Cryptography)、Coding Point Addition over Finite Fields、Exercises 3(47)の解答を求めてみる。
コード
Python 3
ecc_test.py
#!/usr/bin/env python3 from unittest import TestCase, main from ecc import FieldElement, Point class PointTest(TestCase): def setUp(self): pass def tearDown(self): pass def test_ne1(self): p1 = Point(0, 0, 0, 0) p2 = Point(1, 1, 0, 0) self.assertNotEqual(p1, p2) def test_ne2(self): p1 = Point(0, 0, 0, 0) p2 = Point(1, -1, 0, 0) self.assertNotEqual(p1, p2) def test_ne_none(self): self.assertNotEqual(Point(0, 0, 0, 0), None) self.assertNotEqual(None, Point(0, 0, 0, 0)) def test_add_identity(self): p1 = Point(0, 0, 0, 0) p2 = Point(1, -1, 0, 0) inf = Point(None, None, 0, 0) self.assertEqual(p1, p1 + inf) self.assertEqual(p1, inf + p1) self.assertEqual(p2, p2 + inf) self.assertEqual(p2, inf + p2) def test_add_inverses(self): p1 = Point(1, 1, 0, 0) p2 = Point(1, -1, 0, 0) inf = Point(None, None, 0, 0) self.assertEqual(inf, p1 + p2) def test_add_when_x_not_equal_to(self): p1 = Point(2, 5, 5, 7) p2 = Point(-1, -1, 5, 7) self.assertEqual(Point(3, -7, 5, 7), p1 + p2) def test_add_p1_eq_p2(self): p = Point(-1, -1, 5, 7) self.assertEqual(Point(18, 77, 5, 7), p + p) def test_add_finite_field1(self): prime = 223 a = FieldElement(0, prime) b = FieldElement(7, prime) p1 = Point(FieldElement(170, prime), FieldElement(142, prime), a, b) p2 = Point(FieldElement(60, prime), FieldElement(139, prime), a, b) expedted = Point(FieldElement(220, prime), FieldElement(181, prime), a, b) self.assertEqual(expedted, p1 + p2) def test_add_finite_field2(self): prime = 223 a = FieldElement(0, prime) b = FieldElement(7, prime) p1 = Point(FieldElement(47, prime), FieldElement(71, prime), a, b) p2 = Point(FieldElement(17, prime), FieldElement(56, prime), a, b) expedted = Point(FieldElement(215, prime), FieldElement(68, prime), a, b) self.assertEqual(expedted, p1 + p2) def test_add_finite_field3(self): prime = 223 a = FieldElement(0, prime) b = FieldElement(7, prime) p1 = Point(FieldElement(143, prime), FieldElement(98, prime), a, b) p2 = Point(FieldElement(76, prime), FieldElement(66, prime), a, b) expedted = Point(FieldElement(47, prime), FieldElement(71, prime), a, b) self.assertEqual(expedted, p1 + p2) class FieldElementTest(TestCase): def setUp(self): self.a = FieldElement(6, 13) self.b = FieldElement(7, 13) self.c = FieldElement(6, 17) def tearDown(self): pass def test_ne(self): self.assertNotEqual(self.a, None) self.assertNotEqual(self.a, self.b) self.assertNotEqual(self.a, self.c) def test_neg(self): self.assertEqual(-self.a, FieldElement(7, 13)) def test_sub(self): self.assertEqual(self.a - self.a, FieldElement(0, 13)) self.assertEqual(self.a - self.b, FieldElement(12, 13)) self.assertEqual(self.b - self.a, FieldElement(1, 13)) def test_mul(self): self.assertEqual(FieldElement(3, 13), self.a * self.b) def test_mul_exc(self): with self.assertRaises(TypeError): self.a + self.c def test_true_div1(self): prime = 31 actual = FieldElement(3, prime) / FieldElement(24, prime) self.assertEqual(FieldElement(4, prime), actual) def test_true_div2(self): prime = 31 actual = FieldElement(1, prime) / FieldElement(17, prime) ** 3 self.assertEqual(FieldElement(29, prime), actual) def test_true_div3(self): prime = 31 actual = ( FieldElement(1, prime) / FieldElement(4, prime) ** 4 * FieldElement(11, prime) ) self.assertEqual(FieldElement(13, prime), actual) if __name__ == '__main__': main()
ecc.py
#!/usr/bin/env python3 class Point: def __init__(self, x, y, a, b): self.a = a self.b = b self.x = x self.y = y if self.x is None and self.y is None: return if y ** 2 != x ** 3 + a * x + b: raise ValueError(f'({x}, {y}) is not on the curve') def __eq__(self, other): if other is None: return False return (self.x == other.x and self.y == other.y and self.a == other.a and self.b == other.b) def __ne__(self, other): return not (self == other) def __add__(self, other): if self.a != other.a or self.b != other.b: raise TypeError(f'Points {self}, {other} are no on the same curve') if self.x is None: return other if other.x is None: return self if self.x == other.x and self.y != other.y: return self.__class__(None, None, self.a, self.b) if self.x != other.x: s = (other.y - self.y) / (other.x - self.x) x = s ** 2 - self.x - other.x y = s * (self.x - x) - self.y return self.__class__(x, y, self.a, self.b) if self == other and self.y == 0 * self.x: return self.__class__(None, None, self.a, self.b) slope = (3 * self.x ** 2 + self.a) / (2 * self.y) x = slope ** 2 - 2 * self.x y = slope * (self.x - x) - self.y return Point(x, y, self.a, self.b) # raise NotImplementedError('Point.__add__') def __repr__(self): if self.x is None: return 'Point(infinity)' if isinstance(self.x, FieldElement): return f'Point({self.x.num},{self.y.num})' + \ f'_{self.a.num}_{self.b.num} ' + \ f'FieldElement({self.x.prime})' return f'Point({self.x},{self.y})_{self.a}_{self.b}' class FieldElement: def __init__(self, num: int, prime: int): if num < 0 or prime <= num: raise ValueError(f'Num {num} not in field range 0 to {prime - 1}') self.num = num self.prime = prime def __repr__(self) -> str: return f'FieldElement_{self.prime}({self.num})' def __eq__(self, other) -> bool: if other is None: return False return self.num == other.num and self.prime == other.prime def __ne__(self, other) -> bool: if other is None: return True return not self == other def __neg__(self): return self.__class__(-self.num % self.prime, self.prime) def __add__(self, other): if self.prime != other.prime: raise TypeError('Cannot add two numbers in different Fields') return self.__class__((self.num + other.num) % self.prime, self.prime) def __sub__(self, other): if self.prime != other.prime: raise TypeError('Cannot subtract two numbers in different Fields') return self + (- other) def __mul__(self, other): if self.prime != other.prime: raise TypeError('Cannot multiply two numbers in different Fields') return self.__class__((self.num * other.num) % self.prime, self.prime) def __pow__(self, exponent): exponent %= (self.prime - 1) return self.__class__(pow(self.num, exponent, self.prime), self.prime) def __truediv__(self, other): if self.prime != other.prime: raise TypeError('Cannot divide two numbers in different Fields') num = (self.num * pow(other.num, other.prime - 2, other.prime) % self.prime) prime = self.prime return self.__class__(num, prime)
入出力結果(cmd(コマンドプロンプト)、Terminal、Jupyter(IPython))
C:\Users\...>py ecc_test.py -v test_mul (__main__.FieldElementTest) ... ok test_mul_exc (__main__.FieldElementTest) ... ok test_ne (__main__.FieldElementTest) ... ok test_neg (__main__.FieldElementTest) ... ok test_sub (__main__.FieldElementTest) ... ok test_true_div1 (__main__.FieldElementTest) ... ok test_true_div2 (__main__.FieldElementTest) ... ok test_true_div3 (__main__.FieldElementTest) ... ok test_add_finite_field1 (__main__.PointTest) ... ok test_add_finite_field2 (__main__.PointTest) ... ok test_add_finite_field3 (__main__.PointTest) ... ok test_add_identity (__main__.PointTest) ... ok test_add_inverses (__main__.PointTest) ... ok test_add_p1_eq_p2 (__main__.PointTest) ... ok test_add_when_x_not_equal_to (__main__.PointTest) ... ok test_ne1 (__main__.PointTest) ... ok test_ne2 (__main__.PointTest) ... ok test_ne_none (__main__.PointTest) ... ok ---------------------------------------------------------------------- Ran 18 tests in 0.001s OK C:\Users\...>
0 コメント:
コメントを投稿