2019年8月18日日曜日

学習環境

解析入門 原書第3版 (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第4部(級数)、第15章(級数)、4(積分による判定法)の練習問題5を求めてみる。


  1. 2 b 1 x log x 2 dx = log x · 1 log x 2 2 b - 2 b - 2 log x log x 4 · 1 x log x dx = 1 log x 2 b + 2 2 b 1 x log x 2 dx 2 b 1 x log x 2 dx = - 1 log x 2 b = - 1 log b - 1 log 2 b 1 log 2

    よって、問題の級数を収束する。

コード

Python 3

#!/usr/bin/env python3
from sympy import pprint, symbols, summation, oo, log, Integral, plot
import matplotlib.pyplot as plt

print('5.')

n = symbols('n', integer=True)
f = 1 / (n * log(n) ** 2)
s = summation(f, (n, 2, oo))
pprint(s)

I = Integral(f, (n, 2, oo))
for o in [I, I.doit()]:
    pprint(o)
    print()

p = plot(f,
         (n, 2, 12),
         legend=True,
         show=False)
colors = ['red', 'green', 'blue', 'brown', 'orange',
          'purple', 'pink', 'gray', 'skyblue', 'yellow']


for s, color in zip(p, colors):
    s.line_color = color

p.show()
p.save('sample5.png')


def g(m):
    return sum([f.subs({n: k}) for k in range(2, m)])


ms = range(2, 12)
plt.plot(ms, [g(m) for m in ms])
plt.legend(['Σ 1 / n(log n)^2'])
plt.savefig('sample5.png')

入出力結果(Bash、cmd.exe(コマンドプロンプト)、Terminal、Jupyter(IPython))

C:\Users\...>py sample5.py
5.
  ∞            
 ____          
 ╲             
  ╲       1    
   ╲  ─────────
   ╱       2   
  ╱   n⋅log (n)
 ╱             
 ‾‾‾‾          
n = 2          
∞             
⌠             
⎮     1       
⎮ ───────── dn
⎮      2      
⎮ n⋅log (n)   
⌡             
2             

  1   
──────
log(2)


c:\Users\...>

0 コメント:

コメントを投稿