学習環境
- Surface、Surface ペン(端末)
- Windows 10 Pro (OS)
- Nebo(Windows アプリ)
- iPad Pro 10.5 + Apple Pencil
- MyScript Nebo - MyScript(iPad アプリ(iOS))
- 参考書籍
解析入門(上) (松坂和夫 数学入門シリーズ 4) (松坂 和夫(著)、岩波書店)の第5章(各種の初等関数)、5.4(三角関数(続き)、逆三角関数)、問題5の解答を求めてみる。
よって、
よって帰納法により成り立つ。
(証明終)
コード
Python 3
#!/usr/bin/env python3 from sympy import pprint, symbols, sin, cos, log, Derivative, plot print('5.') print('(a)') x, a, b = symbols('x, a, b') f = a * cos(log(x)) + b * sin(log(x)) d1 = Derivative(f, x, 1).doit() d2 = Derivative(f, x, 2).doit() eq = x ** 2 * d2 + x * d1 + f for o in [eq, eq.expand()]: pprint(o) print() print('(b)') n = symbols('n', integer=True, nonnegative=True) for n in range(5): g = x ** n * Derivative(f, x, n) for o in [g, g.doit()]: pprint(o) print() p = plot(*[Derivative(f.subs({a: 2, b: 3}), x, n).doit() for n in range(5)], (x, 0.1, 10.1), ylim=(-5, 5), show=False, legend=True) colors = ['red', 'green', 'blue', 'brown', 'orange', 'purple', 'pink', 'gray', 'skyblue', 'yellow'] for o, color in zip(p, colors): o.line_color = color p.show() p.save('sample5.png')
入出力結果(Bash、cmd.exe(コマンドプロンプト)、Terminal、Jupyter(IPython))
C:\Users\...>py sample5.py 5. (a) ⎛ a⋅sin(log(x)) b⋅cos(log(x))⎞ a⋅sin(log(x)) - b⋅cos(log(x)) + x⋅⎜- ───────────── + ─────────────⎟ ⎝ x x ⎠ 0 (b) a⋅cos(log(x)) + b⋅sin(log(x)) a⋅cos(log(x)) + b⋅sin(log(x)) ∂ x⋅──(a⋅cos(log(x)) + b⋅sin(log(x))) ∂x ⎛ a⋅sin(log(x)) b⋅cos(log(x))⎞ x⋅⎜- ───────────── + ─────────────⎟ ⎝ x x ⎠ 2 2 ∂ x ⋅───(a⋅cos(log(x)) + b⋅sin(log(x))) 2 ∂x a⋅sin(log(x)) - a⋅cos(log(x)) - b⋅sin(log(x)) - b⋅cos(log(x)) 3 3 ∂ x ⋅───(a⋅cos(log(x)) + b⋅sin(log(x))) 3 ∂x -a⋅sin(log(x)) + 3⋅a⋅cos(log(x)) + 3⋅b⋅sin(log(x)) + b⋅cos(log(x)) 4 4 ∂ x ⋅───(a⋅cos(log(x)) + b⋅sin(log(x))) 4 ∂x -10⋅a⋅cos(log(x)) - 10⋅b⋅sin(log(x)) C:\Users\...>
0 コメント:
コメントを投稿