学習環境
解析入門(上) (松坂和夫 数学入門シリーズ 4) (松坂 和夫 (著)、岩波書店 )の第5章(各種の初等関数)、5.4(三角関数(続き)、逆三角関数)、問題8の解答を求めてみる。
lim h → 0 f ( 0 + h ) = lim h → 0 f ( h ) = lim h → 0 h m sin 1 h n = 0
lim h → 0 f ( 0 + h ) - f ( 0 ) h = lim h → 0 f ( h ) h = lim h → 0 h m sin 1 h n h = lim h → 0 h m - 1 sin 1 h n
lim h → 0 h m - 1 = 0
m - 1 > 0 m > 1
x ≠ 0 f ' x = m x m - 1 sin 1 x n + x m cos 1 x n - n x n - 1 x 2 n = m x m - 1 sin 1 x n - x m - n - 1 cos 1 x n
lim x → 0 f ' x = 0
m - n - 1 > 0 m > n + 1
lim h → 0 f ' 0 + h - f ' 0 h = lim h → 0 f ' h h = lim h → 0 1 h m h m - 1 sin 1 h n - h m - n - 1 cos 1 h n = lim h → 0 m h m - 2 sin 1 h n - h m - n - 2 cos 1 h n
m - 2 > 0 m - n - 2 > 0 m > n + 2
x ≠ 0 f ' ' x = m m - 1 x m - 2 sin 1 x n + m x m - 1 cos 1 x n - n x n - 1 x 2 n - m - n - 1 x m - n - 2 cos 1 x n - x m - n - 1 - sin 1 x n · - n x n - 1 x 2 n
lim x → 0 f ' ' x = 0
m - 2 > 0 m - n - 2 > 0 m - 2 n - 2 > 0 m > 2 n + 2
コード
Python 3
#!/usr/bin/env python3
from sympy import pprint, symbols, sin, Derivative, plot
print ( '8.' )
x = symbols ( 'x' )
n = 2
ms = [ n + m for m in range ( 1 , 5 )]
fs = [ x ** m * sin ( 1 / x ** n) for m in ms]
for i, g in enumerate ( fs):
gs = []
for l in range ( 3 ):
d = Derivative ( g, x, l)
d1 = d. doit ()
gs. append ( d1)
for o in [ d, d1]:
pprint ( o)
print ()
p = plot (*[( g, ( x, - 1 , - 0.00001 )) for g in gs],
*[( g, ( x, 0.00001 , 1 )) for g in gs],
ylim=(- 1 , 1 ),
show= False,
legend= True)
colors = [ 'red' , 'green' , 'blue' , 'brown' , 'orange' ,
'purple' , 'pink' , 'gray' , 'skyblue' , 'yellow' ]
for o, color in zip ( p, colors):
o. line_color = color
p. show ()
p. save ( 'sample8_{i}.png' )
入出力結果(Bash、cmd.exe(コマンドプロンプト)、Terminal、Jupyter(IPython))
C:\Users\...>py sample8.py
8.
3 ⎛1 ⎞
x ⋅sin⎜──⎟
⎜ 2⎟
⎝x ⎠
3 ⎛1 ⎞
x ⋅sin⎜──⎟
⎜ 2⎟
⎝x ⎠
d ⎛ 3 ⎛1 ⎞⎞
──⎜x ⋅sin⎜──⎟⎟
dx⎜ ⎜ 2⎟⎟
⎝ ⎝x ⎠⎠
2 ⎛1 ⎞ ⎛1 ⎞
3⋅x ⋅sin⎜──⎟ - 2⋅cos⎜──⎟
⎜ 2⎟ ⎜ 2⎟
⎝x ⎠ ⎝x ⎠
2
d ⎛ 3 ⎛1 ⎞⎞
───⎜x ⋅sin⎜──⎟⎟
2⎜ ⎜ 2⎟⎟
dx ⎝ ⎝x ⎠⎠
⎛ ⎛1 ⎞ ⎞
⎜ 2⋅sin⎜──⎟ ⎟
⎜ ⎜ 2⎟ ⎟
⎜ ⎛1 ⎞ ⎝x ⎠ ⎛1 ⎞⎟
⎜ 3⋅cos⎜──⎟ - ───────── 6⋅cos⎜──⎟⎟
⎜ ⎜ 2⎟ 2 ⎜ 2⎟⎟
⎜ ⎛1 ⎞ ⎝x ⎠ x ⎝x ⎠⎟
2⋅⎜3⋅x⋅sin⎜──⎟ + ───────────────────── - ─────────⎟
⎜ ⎜ 2⎟ x x ⎟
⎝ ⎝x ⎠ ⎠
4 ⎛1 ⎞
x ⋅sin⎜──⎟
⎜ 2⎟
⎝x ⎠
4 ⎛1 ⎞
x ⋅sin⎜──⎟
⎜ 2⎟
⎝x ⎠
d ⎛ 4 ⎛1 ⎞⎞
──⎜x ⋅sin⎜──⎟⎟
dx⎜ ⎜ 2⎟⎟
⎝ ⎝x ⎠⎠
3 ⎛1 ⎞ ⎛1 ⎞
4⋅x ⋅sin⎜──⎟ - 2⋅x⋅cos⎜──⎟
⎜ 2⎟ ⎜ 2⎟
⎝x ⎠ ⎝x ⎠
2
d ⎛ 4 ⎛1 ⎞⎞
───⎜x ⋅sin⎜──⎟⎟
2⎜ ⎜ 2⎟⎟
dx ⎝ ⎝x ⎠⎠
⎛ ⎛1 ⎞⎞
⎜ 2⋅sin⎜──⎟⎟
⎜ ⎜ 2⎟⎟
⎜ 2 ⎛1 ⎞ ⎛1 ⎞ ⎝x ⎠⎟
2⋅⎜6⋅x ⋅sin⎜──⎟ - 5⋅cos⎜──⎟ - ─────────⎟
⎜ ⎜ 2⎟ ⎜ 2⎟ 2 ⎟
⎝ ⎝x ⎠ ⎝x ⎠ x ⎠
5 ⎛1 ⎞
x ⋅sin⎜──⎟
⎜ 2⎟
⎝x ⎠
5 ⎛1 ⎞
x ⋅sin⎜──⎟
⎜ 2⎟
⎝x ⎠
d ⎛ 5 ⎛1 ⎞⎞
──⎜x ⋅sin⎜──⎟⎟
dx⎜ ⎜ 2⎟⎟
⎝ ⎝x ⎠⎠
4 ⎛1 ⎞ 2 ⎛1 ⎞
5⋅x ⋅sin⎜──⎟ - 2⋅x ⋅cos⎜──⎟
⎜ 2⎟ ⎜ 2⎟
⎝x ⎠ ⎝x ⎠
2
d ⎛ 5 ⎛1 ⎞⎞
───⎜x ⋅sin⎜──⎟⎟
2⎜ ⎜ 2⎟⎟
dx ⎝ ⎝x ⎠⎠
⎛ ⎛1 ⎞⎞
⎜ 2⋅sin⎜──⎟⎟
⎜ ⎜ 2⎟⎟
⎜ 2 ⎛1 ⎞ ⎛1 ⎞ ⎝x ⎠⎟
2⋅x⋅⎜10⋅x ⋅sin⎜──⎟ - 7⋅cos⎜──⎟ - ─────────⎟
⎜ ⎜ 2⎟ ⎜ 2⎟ 2 ⎟
⎝ ⎝x ⎠ ⎝x ⎠ x ⎠
6 ⎛1 ⎞
x ⋅sin⎜──⎟
⎜ 2⎟
⎝x ⎠
6 ⎛1 ⎞
x ⋅sin⎜──⎟
⎜ 2⎟
⎝x ⎠
d ⎛ 6 ⎛1 ⎞⎞
──⎜x ⋅sin⎜──⎟⎟
dx⎜ ⎜ 2⎟⎟
⎝ ⎝x ⎠⎠
5 ⎛1 ⎞ 3 ⎛1 ⎞
6⋅x ⋅sin⎜──⎟ - 2⋅x ⋅cos⎜──⎟
⎜ 2⎟ ⎜ 2⎟
⎝x ⎠ ⎝x ⎠
2
d ⎛ 6 ⎛1 ⎞⎞
───⎜x ⋅sin⎜──⎟⎟
2⎜ ⎜ 2⎟⎟
dx ⎝ ⎝x ⎠⎠
⎛ ⎛1 ⎞⎞
⎜ 2⋅sin⎜──⎟⎟
⎜ ⎜ 2⎟⎟
2 ⎜ 2 ⎛1 ⎞ ⎛1 ⎞ ⎝x ⎠⎟
2⋅x ⋅⎜15⋅x ⋅sin⎜──⎟ - 9⋅cos⎜──⎟ - ─────────⎟
⎜ ⎜ 2⎟ ⎜ 2⎟ 2 ⎟
⎝ ⎝x ⎠ ⎝x ⎠ x ⎠
C:\Users\...>
0 コメント:
コメントを投稿