2019年12月23日月曜日

学習環境

解析入門(上) (松坂和夫 数学入門シリーズ 4) (松坂 和夫(著)、岩波書店)の第8章(積分の計算)、8.1(不定積分の計算)、問題1の解答を求めてみる。



    1. 1 x 3 - x = 1 x x 2 - 1 = 1 x x + 1 x - 1 A x + B x + 1 + C x - 1 = A x 2 - 1 + B x 2 - x + C x 2 + x x 3 - x = A + B + C x 2 + - B + C x - A x 3 - x { A + B + C = 0 - B + C = 0 - A = 1 A = - 1 B = C - 1 + 2 B = 0 B = 1 2

      よって 求める積分は、

      1 x 3 - x dx = - x dx + 1 2 1 x + 1 dx + 1 2 1 x - 1 dx = - log x + 1 2 log x + 1 + 1 2 log x - 1 = 1 2 - log x 2 + log x + 1 + log x - 1 = 1 2 log x 2 - 1 x 2

      (積分定数の記述は省略)


    2. x 3 x 3 - 7 x + 6 = x 3 - 7 x + 6 + 7 x - 6 x 3 - 7 x + 6 = 1 + 7 x - 6 x 3 - 7 x + 6 = 1 + 7 x - 6 x - 1 x 2 + x - 6 = 1 + 7 x - 6 x - 1 x - 2 x + 3 A x - 1 + B x - 2 + C x + 3 = A x 2 + x - 6 + B x 2 + 2 x - 3 + C x 2 - 3 x + 2 x 2 - 7 x + 6 = A + B + C x 2 + A + 2 B - 3 C x + - 6 A - 3 B + 2 C x 2 - 7 x + 6 { A + B + C = 0 A + 2 B - 3 C = 7 - 6 A - 3 B + 2 C = - 6 4 A + 5 B = 7 - 8 A - 5 B = - 6 - 4 A = 1 A = - 1 4 - 1 + 5 B = 7 B = 8 5 C = 1 4 - 8 5 = - 27 20

      よって、

      x 3 x 3 - 7 x + 6 dx = x - 1 4 log x - 1 + 8 5 log x - 2 - 27 20 log x + 3

    3. 1 x 4 - 1 = 1 x 2 + 1 x + 1 x - 1 A x + B x 2 + 1 + C x + 1 + D x - 1 = A x + B x 2 - 1 + C x 2 + 1 x - 1 + D x 2 + 1 x + 1 x 4 - 1 = A x 3 - A x + B x 2 - B + C x 3 - x 2 + x - 1 + D x 3 + x 2 + x + 1 x 4 - 1 = A + C + D x 3 + B - C + D x 2 + - A + C + D x + - B - C + D x 4 - 1 { A + C + D = 0 B - C + D = 0 - A + C + D = 0 - B - C + D = 1 A = 0 2 B = - 1 B = - 1 2 D = - C - 1 2 - C - C = 0 C = - 1 4 D = 1 4

      よって、

      1 x 4 - 1 dx = - 1 2 arctan x - 1 4 log x + 1 + 1 4 log x - 1 = - 1 2 arctan x + 1 4 log x - 1 x + 1

    4. A x + B x + 1 + C x + 1 2 + D x + 1 3 = A x + 1 3 + B x x + 1 2 + C x x + 1 + D x x x + 1 3 = A + B x 3 + 3 A + 2 B + C x 2 + 3 A + B + C + D x + A x x + 1 3 A = - 1 B = 2 - 3 + 4 + C = 0 C = - 1 - 3 + 2 - 1 + D = 0 D = 2

      よって、

      x 3 - 1 x x + 1 3 dx = - log x + 2 log x + 1 + 1 x + 1 - 1 x + 1 2

    5. 1 x 3 + 1 = 1 x + 1 x 2 - x + 1 A x + 1 + B x + C x 2 - x + 1 = A x 2 - x + 1 + B x + C x + 1 x 3 + 1 = A + B x 2 + - A + B + C x + A + C x 3 + 1 { A + B = 0 - A + B + C = 0 A + C = 1 B = - A C = 1 - A - A - A + 1 - A = 0 A = 1 3 B = - 1 3 C = 2 3

      よって、

      1 x 3 + 1 dx = 1 3 log x + 1 - 1 3 x - 2 x 2 - x + 1 dx = 1 3 log x + 1 - 1 3 · 1 2 2 x - 4 x 2 - x + 1 dx = 1 3 log x + 1 - 1 6 2 x - 1 - 3 x 2 - x + 1 dx = 1 3 log x + 1 - 1 6 2 x - 1 x 2 - x + 1 dx + 1 2 1 x 2 - x + 1 dx = 1 3 log x + 1 - 1 6 log x 2 - x + 1 + 1 2 1 x - 1 2 2 + 3 2 2 dx = 1 3 log x + 1 - 1 6 log x 2 - x + 1 + 1 2 · 2 3 arctan 2 3 x - 1 2 = 1 3 log x + 1 - 1 6 log x 2 - x + 1 + 1 3 arctan 2 x - 1 3 = 1 3 log x + 1 2 x 2 - x + 1 + 1 3 arctan 2 x - 1 3

    6. 1 x 3 + 1 2 dx = x 3 + 1 - x 3 · 3 x 2 x 3 + 1 2 dx = 1 x 3 + 1 d x - 1 3 x · 3 x 2 x 3 + 1 2 dx = 1 x 3 + 1 dx + 1 3 d dx 1 x 3 + 1 x dx = 1 x 3 + 1 dx + 1 3 · x x 3 + 1 - 1 3 1 x 3 + 1 dx = 2 3 1 x 3 + 1 dx + x 3 x 3 + 1 = x 3 x 2 + 1 + 2 9 log x + 1 2 x 2 - x + 1 + 2 3 3 arctan 2 x - 1 3

コード

#!/usr/bin/env python3
from sympy import pprint, symbols, plot, Integral, Rational, oo

print('1.')

x = symbols('x')
fs = [1 / (x ** 3 - x),
      x ** 3 / (x ** 3 - 7 * x + 6),
      1 / (x ** 4 - 1),
      (x ** 3 - 1) / (x * (x + 1) ** 3),
      1 / (x ** 3 + 1),
      1 / (x ** 3 + 1) ** 2]

for i, f in enumerate(fs, 1):
    print(f'({i})')
    I = Integral(f, x)
    for o in [I, I.doit()]:
        pprint(o.simplify())
        print()

p = plot(*fs,
         (x, -5, 5),
         ylim=(-5, 5),
         show=False,
         legend=True)
colors = ['red', 'green', 'blue', 'brown', 'orange',
          'purple', 'pink', 'gray', 'skyblue', 'yellow']

for o, color in zip(p, colors):
    o.line_color = color

p.show()
p.save('sample1.png')

入出力結果(Zsh、PowerShell、Terminal、Jupyter(IPython))

% ./sample1.py
1.
(1)
⌠          
⎮   1      
⎮ ────── dx
⎮  3       
⎮ x  - x   
⌡          

             ⎛ 2    ⎞
          log⎝x  - 1⎠
-log(x) + ───────────
               2     

(2)
⌠                
⎮       3        
⎮      x         
⎮ ──────────── dx
⎮  3             
⎮ x  - 7⋅x + 6   
⌡                

    8⋅log(x - 2)   log(x - 1)   27⋅log(x + 3)
x + ──────────── - ────────── - ─────────────
         5             4              20     

(3)
⌠          
⎮   1      
⎮ ────── dx
⎮  4       
⎮ x  - 1   
⌡          

log(x - 1)   log(x + 1)   atan(x)
────────── - ────────── - ───────
    4            4           2   

(4)
⌠              
⎮    3         
⎮   x  - 1     
⎮ ────────── dx
⎮          3   
⎮ x⋅(x + 1)    
⌡              

                             ⎛ 2          ⎞
x + (-log(x) + 2⋅log(x + 1))⋅⎝x  + 2⋅x + 1⎠
───────────────────────────────────────────
                 2                         
                x  + 2⋅x + 1               

(5)
⌠          
⎮   1      
⎮ ────── dx
⎮  3       
⎮ x  + 1   
⌡          

                                      ⎛√3⋅(2⋅x - 1)⎞
                ⎛ 2        ⎞   √3⋅atan⎜────────────⎟
log(x + 1)   log⎝x  - x + 1⎠          ⎝     3      ⎠
────────── - ─────────────── + ─────────────────────
    3               6                    3          

(6)
⌠             
⎮     1       
⎮ ───────── dx
⎮         2   
⎮ ⎛ 3    ⎞    
⎮ ⎝x  + 1⎠    
⌡             

      ⎛ 3    ⎞ ⎛                  ⎛ 2        ⎞            ⎛√3⋅(2⋅x - 1)⎞⎞
3⋅x + ⎝x  + 1⎠⋅⎜2⋅log(x + 1) - log⎝x  - x + 1⎠ + 2⋅√3⋅atan⎜────────────⎟⎟
               ⎝                                          ⎝     3      ⎠⎠
─────────────────────────────────────────────────────────────────────────
                                  ⎛ 3    ⎞                               
                                9⋅⎝x  + 1⎠                               

%

0 コメント:

コメントを投稿