学習環境
- Surface
- Windows 10 Pro (OS)
- Nebo(Windows アプリ)
- iPad
- MyScript Nebo - MyScript(iPad アプリ(iOS))
- 参考書籍
解析入門(上) (松坂和夫 数学入門シリーズ 4) (松坂 和夫(著)、岩波書店)の第8章(積分の計算)、8.2(定積分の計算)、問題3の解答を求めてみる。
コード
#!/usr/bin/env python3
from sympy import pprint, symbols, sin, cos, pi, Integral, plot
print('3.')
x = symbols('x')
m, n = symbols('m, n', integer=True, nonnegative=True)
fs = [sin(m * x) * sin(n * x),
sin(m * x) * cos(n * x),
cos(m * x) * cos(n * x)]
for i, f in enumerate(fs, 1):
print(f'({i})')
I = Integral(f, (x, -pi, pi))
for o in [I, I.doit()]:
pprint(o)
print()
p = plot(*[f.subs({m: m0, n: n0})
for f in fs
for m0 in range(0, 2)
for n0 in range(0, 2)],
(x, -5, 5),
ylim=(-5, 5),
legend=True,
show=False)
colors = ['red', 'green', 'blue', 'brown', 'orange',
'purple', 'pink', 'gray', 'skyblue', 'yellow']
for o, color in zip(p, colors):
o.line_color = color
p.show()
p.save('sample3.png')
入出力結果(Zsh、PowerShell、Terminal、Jupyter(IPython))
% ./sample3.py
3.
(1)
π
⌠
⎮ sin(m⋅x)⋅sin(n⋅x) dx
⌡
-π
⎧0 for (m = 0 ∧ n = 0) ∨ (m = 0 ∧ m = n ∧ n = 0) ∨ (m = 0 ∧ m = -n ∧ n = 0)
⎪
⎪-π for (m = 0 ∧ m = -n) ∨ (m = -n ∧ m = n) ∨ (m = -n ∧ n = 0) ∨ (m = 0 ∧ m
⎨
⎪π for (m = 0 ∧ m = n) ∨ (m = n ∧ n =
⎪
⎩0 otherwise
∨ (m = 0 ∧ m = -n ∧ m = n ∧ n = 0) ∨ m = 0 ∨ n = 0
= -n ∧ m = n) ∨ (m = -n ∧ m = n ∧ n = 0) ∨ m = -n
0) ∨ m = n
(2)
π
⌠
⎮ sin(m⋅x)⋅cos(n⋅x) dx
⌡
-π
0
(3)
π
⌠
⎮ cos(m⋅x)⋅cos(n⋅x) dx
⌡
-π
⎧2⋅π for (m = 0 ∧ n = 0) ∨ (m = 0 ∧ m = n ∧ n =
⎪
⎨ π for (m = 0 ∧ m = -n) ∨ (m = 0 ∧ m = n) ∨ (m = -n ∧ m = n) ∨ (m = n ∧ n =
⎪
⎩ 0
0) ∨ (m = 0 ∧ m = -n ∧ n = 0) ∨ (m = 0 ∧ m = -n ∧ m = n ∧ n = 0)
0) ∨ (m = -n ∧ n = 0) ∨ (m = 0 ∧ m = -n ∧ m = n) ∨ (m = -n ∧ m = n ∧ n = 0) ∨
otherwise
m = -n ∨ m = n
%
0 コメント:
コメントを投稿