学習環境
- Surface
- Windows 10 Pro (OS)
- Nebo(Windows アプリ)
- iPad
- MyScript Nebo - MyScript(iPad アプリ(iOS))
- 参考書籍
解析入門(上) (松坂和夫 数学入門シリーズ 4) (松坂 和夫(著)、岩波書店)の第9章(関数列と関数級数)、9.2(整級数)、問題6の解答を求めてみる。
コード
#!/usr/bin/env python3
from sympy import symbols, sqrt, plot, summation, factorial, pprint
print('6.')
def comb(a, n):
num = 1
for n0 in range(n):
num *= (a - n0)
return num / factorial(n)
x = symbols('x')
alpha = 2
f = 1 / (1 - x) ** alpha
p = plot(f,
*[sum([comb(alpha + n - 1, n) * x ** n for n in range(m)])
for m in range(1, 10)],
(x, -1.5, 1.5),
ylim=(-10, 10),
legend=False,
show=False)
colors = ['red', 'green', 'blue', 'brown', 'orange',
'purple', 'pink', 'gray', 'skyblue', 'yellow']
for o, color in zip(p, colors):
o.line_color = color
for o in zip(p, colors):
pprint(o)
p.show()
p.save('sample6.png')
入出力結果(Zsh、PowerShell、Terminal、Jupyter(IPython))
% ./sample6.py
6.
(cartesian line: (1 - x)**(-2) for x over (-1.5, 1.5), red)
(cartesian line: 1 for x over (-1.5, 1.5), green)
(cartesian line: 2*x + 1 for x over (-1.5, 1.5), blue)
(cartesian line: 3*x**2 + 2*x + 1 for x over (-1.5, 1.5), brown)
(cartesian line: 4*x**3 + 3*x**2 + 2*x + 1 for x over (-1.5, 1.5), orange)
(cartesian line: 5*x**4 + 4*x**3 + 3*x**2 + 2*x + 1 for x over (-1.5, 1.5), purp
le)
(cartesian line: 6*x**5 + 5*x**4 + 4*x**3 + 3*x**2 + 2*x + 1 for x over (-1.5, 1
.5), pink)
(cartesian line: 7*x**6 + 6*x**5 + 5*x**4 + 4*x**3 + 3*x**2 + 2*x + 1 for x over
(-1.5, 1.5), gray)
(cartesian line: 8*x**7 + 7*x**6 + 6*x**5 + 5*x**4 + 4*x**3 + 3*x**2 + 2*x + 1 f
or x over (-1.5, 1.5), skyblue)
(cartesian line: 9*x**8 + 8*x**7 + 7*x**6 + 6*x**5 + 5*x**4 + 4*x**3 + 3*x**2 +
2*x + 1 for x over (-1.5, 1.5), yellow)
%
0 コメント:
コメントを投稿