学習環境
- Surface
- Windows 10 Pro (OS)
- Nebo(Windows アプリ)
- iPad
- MyScript Nebo - MyScript(iPad アプリ(iOS))
- 参考書籍
代数への出発 (新装版 数学入門シリーズ) (松坂 和夫(著)、岩波書店)の第5章(連立方程式と高次方程式)、4(高次方程式と因数定理)、問23の解答を求めてみる。
(複号任意)
コード
#!/usr/bin/env python3
from unittest import TestCase, main
from sympy import symbols, I, sqrt, solveset, plot
print('23.')
x = symbols('x')
class TestQuarticEquation(TestCase):
def test1(self):
self.assertEqual(solveset(x ** 4 - 1),
{s * o
for s in [-1, 1]
for o in [1, I]})
def test2(self):
self.assertEqual(solveset(x ** 4 + 1),
{((s + t * I) / sqrt(2)).expand()
for s in [-1, 1]
for t in [-1, 1]})
def test3(self):
self.assertEqual(solveset(x ** 4 - 5 * x ** 2 + 6),
{s * sqrt(o)
for s in [-1, 1]
for o in [2, 3]})
p = plot(x ** 4, 1, -1, x ** 4 - 5 * x ** 2 + 6,
(x, -5, 5),
ylim=(-5, 5),
legend=True,
show=False)
colors = ['red', 'green', 'blue', 'brown', 'orange', 'pink']
for i, s in enumerate(p):
s.line_color = colors[i]
p.show()
p.save('sample23.png')
if __name__ == "__main__":
main()
入出力結果(Zsh、PowerShell、Terminal、Jupyter(IPython))
% ./sample23.py -v
23.
test1 (__main__.TestQuarticEquation) ... ok
test2 (__main__.TestQuarticEquation) ... ok
test3 (__main__.TestQuarticEquation) ... ok
----------------------------------------------------------------------
Ran 3 tests in 0.093s
OK
%
0 コメント:
コメントを投稿