2020年4月29日水曜日

学習環境

代数への出発 (新装版 数学入門シリーズ) (松坂 和夫(著)、岩波書店)の第5章(連立方程式と高次方程式)、4(高次方程式と因数定理)、問23の解答を求めてみる。



    1. x 4 = 1 x 4 - 1 = 0 x 2 + 1 x 2 - 1 = 0 x = ± 1 , ± i

    2. x 4 + 1 = 0 x 2 + 1 2 - 2 x 2 = 0 x 2 + 1 - 2 x x 2 + 1 + 2 x = 0 x 2 - 2 x + 1 = 0 x 2 + 2 x + 1 = 0 x = ± 2 ± 2 - 4 2 = ± 2 ± 2 i 2 = ± 1 ± i 2

      (複号任意)


    3. x 4 - 5 x 2 + 6 = 0 x 2 - 2 x 2 - 3 = 0 x = ± 2 , ± 3

コード

#!/usr/bin/env python3
from unittest import TestCase, main
from sympy import symbols, I, sqrt, solveset, plot

print('23.')

x = symbols('x')


class TestQuarticEquation(TestCase):
    def test1(self):
        self.assertEqual(solveset(x ** 4 - 1),
                         {s * o
                          for s in [-1, 1]
                          for o in [1, I]})

    def test2(self):
        self.assertEqual(solveset(x ** 4 + 1),
                         {((s + t * I) / sqrt(2)).expand()
                          for s in [-1, 1]
                          for t in [-1, 1]})

    def test3(self):
        self.assertEqual(solveset(x ** 4 - 5 * x ** 2 + 6),
                         {s * sqrt(o)
                          for s in [-1, 1]
                             for o in [2, 3]})


p = plot(x ** 4, 1, -1, x ** 4 - 5 * x ** 2 + 6,
         (x, -5, 5),
         ylim=(-5, 5),
         legend=True,
         show=False)
colors = ['red', 'green', 'blue', 'brown', 'orange', 'pink']

for i, s in enumerate(p):
    s.line_color = colors[i]

p.show()
p.save('sample23.png')

if __name__ == "__main__":
    main()

入出力結果(Zsh、PowerShell、Terminal、Jupyter(IPython))

% ./sample23.py -v
23.
test1 (__main__.TestQuarticEquation) ... ok
test2 (__main__.TestQuarticEquation) ... ok
test3 (__main__.TestQuarticEquation) ... ok

----------------------------------------------------------------------
Ran 3 tests in 0.093s

OK
%

0 コメント:

コメントを投稿