2020年5月1日金曜日

学習環境

代数への出発 (新装版 数学入門シリーズ) (松坂 和夫(著)、岩波書店)の第5章(連立方程式と高次方程式)、4(高次方程式と因数定理)、問24の解答を求めてみる。



    1. x 4 = 1 x 4 - 1 = 0 x 2 + 1 x 2 - 1 = 0 x = ± 1 , ± i

    2. x 4 + 1 = 0 x 2 + 1 2 - 2 x 2 = 0 x 2 + 1 - 2 x x 2 + 1 + 2 x = 0 x 2 - 2 x + 1 = 0 x 2 + 2 x + 1 = 0 x = ± 2 ± 2 - 4 2 = ± 2 ± 2 i 2 = ± 1 ± i 2

      (複号任意)


    3. x 4 - 5 x 2 + 6 = 0 x 2 - 2 x 2 - 3 = 0 x = ± 2 , ± 3

コード

#!/usr/bin/env python3
from unittest import TestCase, main
from sympy import symbols, I, sqrt, solveset, plot, Rational

print('24.')

x = symbols('x', imag=True)
fs = [x ** 3 - 6 * x ** 2 - 5 * x + 2,
      x ** 3 - 4 * x ** 2 - 3 * x + 18,
      2 * x ** 3 + x ** 2 + x - 1,
      x ** 4 + x ** 3 - 6 * x ** 2 + x + 3]
xss = [(-1, *[(7 + s * sqrt(41)) / 2 for s in [-1, 1]]),
       (-2, 3),
       (Rational(1, 2), *[(-1 + s * sqrt(3) * I) / 2 for s in [-1, 1]]),
       (-3, 1, *[(1 + s * sqrt(5)) / 2 for s in [-1, 1]])]


class TestQuarticEquation(TestCase):
    def test(self):
        for i, (f, xs) in enumerate(zip(fs, xss), 1):
            print(f'({i})')
            self.assertEqual(solveset(f), set(xs))


p = plot(*fs,
         (x, -10, 10),
         ylim=(-10, 10),
         legend=True,
         show=False)
colors = ['red', 'green', 'blue', 'brown', 'orange', 'pink']

for i, s in enumerate(p):
    s.line_color = colors[i]

p.show()
p.save('sample24.png')

if __name__ == "__main__":
    main()

入出力結果(Zsh、PowerShell、Terminal、Jupyter(IPython))

% ./sample24.py -v 
24.
test (__main__.TestQuarticEquation) ... (1)
(2)
(3)
(4)
ok

----------------------------------------------------------------------
Ran 1 test in 0.125s

OK
%

0 コメント:

コメントを投稿