学習環境
- Surface
- Windows 10 Pro (OS)
- Nebo(Windows アプリ)
- iPad
- MyScript Nebo - MyScript(iPad アプリ(iOS))
- 参考書籍
続 解析入門 (原書第2版) (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第2章(ベクトルの微分)、1(微分係数)の練習問題6の解答を求めてみる。
よって、 加速度ベクトルは位置ベクトルと反対の向きをもつ。
コード
#!/usr/bin/env python3
from unittest import TestCase, main
from sympy import Matrix, sin, cos, exp, log, Derivative
from sympy.abc import t
from sympy.plotting import plot_parametric
print('6.')
class Test(TestCase):
def test3(self):
a = Matrix([cos(t), sin(t)])
self.assertEqual(Derivative(a, t, 2).doit(), -a)
def test4(self):
a = Matrix([cos(3 * t), sin(3 * t)])
self.assertEqual(Derivative(a, t, 2).doit(), -9 * a)
p = plot_parametric(
(cos(t), sin(t), (t, -5, 5)),
*[(cos(t0) + t * (-cos(t0)),
sin(t0) + t * (-sin(t0)),
(t, 0, 1))
for t0 in range(-5, 6)],
legend=False,
show=False
)
colors = ['red', 'green', 'blue', 'brown', 'orange',
'purple', 'pink', 'gray', 'skyblue', 'yellow']
for o, color in zip(p, colors):
o.line_color = color
p.save('sample6.png')
p.show()
if __name__ == "__main__":
main()
入出力結果(Zsh、PowerShell、Terminal、Jupyter(IPython))
% ./sample6.py -v
6.
test3 (__main__.Test) ... ok
test4 (__main__.Test) ... ok
----------------------------------------------------------------------
Ran 2 tests in 0.011s
OK
%
0 コメント:
コメントを投稿