学習環境
微分積分学 (ちくま学芸文庫) (吉田 洋一(著)、筑摩書房)のI.(微分法)、演習問題 I.、26の解答を求めてみる。
t>0bt-12gt2=0t(b-12gt)=0b-12gt=0t=2bg
x=2abg
b-gt=0t=bg
y=b·bg-12g·b2g2=b2g-12b2g=b22g
x=abg
-OP
コード
Python 3
#!/usr/bin/env python3
from sympy import pprint, symbols, Derivative, plot, solve, sqrt
from sympy.plotting import plot_parametric
import random
print('26.')
a, b, g = symbols('a, b, g', positive=True)
t = symbols('t', nonnegative=True)
x = a * t
y = b * t - g * t ** 2 / 2
print('ⅰ')
pprint([Derivative(z, t).doit() for z in [x, y]])
print('\nⅱ')
ts = solve(y, t)
pprint(ts)
print()
pprint(x.subs({t: ts[1]}))
print('\nⅲ')
ts = solve(Derivative(y, t).doit(), t)
pprint(ts)
print()
pprint(y.subs({t: ts[0]}))
print('\nⅳ')
pprint(x.subs({t: ts[0]}))
a_list = []
b_list = []
t_list = []
p_list = []
g0 = 9.8
for _ in range(10):
b0 = random.randrange(1, 11)
d = {a: random.randrange(1, 11), b: b0, g: g0}
p_list.append((x.subs(d), y.subs(d), (t, 0, 2 * b0 / g0)))
p = plot_parametric(*p_list, legend=True, show=False)
colors = ['red', 'green', 'blue', 'brown', 'orange',
'purple', 'pink', 'gray', 'skyblue', 'yellow']
for o, color in zip(p, colors):
o.line_color = color
p.show()
p.save('sample26.png')
入出力結果(Bash、cmd.exe(コマンドプロンプト)、Terminal、Jupyter(IPython))
C:\Users\...>py sample26.py
26.
ⅰ
[a, b - g⋅t]
ⅱ
⎡ 2⋅b⎤
⎢0, ───⎥
⎣ g ⎦
2⋅a⋅b
─────
g
ⅲ
⎡b⎤
⎢─⎥
⎣g⎦
2
b
───
2⋅g
ⅳ
a⋅b
───
g
c:\Users\...>
0 コメント:
コメントを投稿